The role of tumor necrosis factor signaling pathways in the response of murine brain to irradiation.

نویسندگان

  • J L Daigle
  • J H Hong
  • C S Chiang
  • W H McBride
چکیده

Late effects after radiotherapy for brain tumors can be severe and tend to limit the efficacy of this treatment modality. The mechanisms governing the development of late radiation-induced lesions in the brain are not clear, but they are preceded by cycles of molecular and cellular events including production of cytokines, one of which is tumor necrosis factor (TNF)-alpha. There is literature to support possible roles for TNF-alpha as a contributor to edema, gliosis, and demyelination in the brain, all of which are histopathologically associated with radiation-induced brain damage. We have examined the role of TNF-alpha signaling in the response to brain irradiation using TNFRp55- or TNFRp75-deficient and control mice. Mice lacking TNFRp75 exhibited increased early radiation-induced apoptosis in putative stem cell regions of the brain. At 1 month, they had decreased proliferative responses in the same regions, and by 3 months they were demonstrating dose-dependent seizures and other severe neurological abnormalities that were not seen in control or TNFRp55-/- mice. Seizure activity correlated with the onset of extensive demyelination, and by 6 months, levels of myelin basic protein in irradiated TNFRp75-/- mice were approximately 40% of those seen in the other two strains; the animals were moribund and had to be euthanized. These observations indicate that radiation-induced TNF-alpha, acting through TNFRp75, protects against the development of late complications of brain irradiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of miRNA Dysregulation in Thyroid Cancer Development by Targeting the Main Signaling Pathways

Thyroid cancer is one of the most common malignancies of endocrine glands, causing carcinomas, such as papillary, follicular, medullary, and anaplastic thyroid carcinomas. Due to the significance of thyroid carcinomas, identification of the main signaling pathways and  the affecting mutations has been considered by researchers. Further studies on the dysregulation of oncogenes in signaling path...

متن کامل

Wedelolactone from Vietnamese Eclipta prostrata (L.) L. protected zymosan-induced shock in mice

Wedelolactone is known to have biological activities such as anti-inflammation hepatitis, anti-hepatotoxic activity, and trypsin inhibitory effect. However, up to date, there has not been studied deeply in the role of wedelolactone for zymosan-induced signaling pathways in the process of regulating the excessive inflammatory responses in host. Here, we demonstrated that wedelolactone plays an e...

متن کامل

Wedelolactone from Vietnamese Eclipta prostrata (L.) L. protected zymosan-induced shock in mice

Wedelolactone is known to have biological activities such as anti-inflammation hepatitis, anti-hepatotoxic activity, and trypsin inhibitory effect. However, up to date, there has not been studied deeply in the role of wedelolactone for zymosan-induced signaling pathways in the process of regulating the excessive inflammatory responses in host. Here, we demonstrated that wedelolactone plays an e...

متن کامل

Pharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways

Objective(s): Neurodegeneration is an outcome of Methamphetamine (METH) abuse. Studies have emphasized on the neuroprotective properties of lithium. The current study is designed towards evaluating the role of Akt-1/GSK3 and CREB-BDNF signaling pathways in mediating lithium neuroprotection against METH-induced neurodegeneration in rats. Materials and ...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 61 24  شماره 

صفحات  -

تاریخ انتشار 2001